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How shear flow of a semidilute suspension modifies its self-mobility
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We investigate a semidilute hard sphere colloidal suspension with no hydrodynamic interactions.
The suspension undergoes a steady shear flow. In addition, a small constant external force induces
a tagged particle flux. In order to determine the shear-dependent self-mobility matrix (relating the
flux to the force) we construct the approximate solution to the two-particle Smoluchowski equation
at contact, applying the induced source method, combined with a power expansion in the square root
of the shear rate. We evaluate the self-mobility tensor numerically by means of Padé approximants

for small and moderate shear rates.

PACS number(s): 82.70.Dd, 83.50.Ax, 51.10.+y, 47.15.Pn

I. INTRODUCTION

Colloidal suspensions under steady shear undergo pro-
nounced structural changes revealed by a distortion of
the structure factor from its equilibrium form [1-5]. The
magnitude of this distortion is determined by the com-
petition between Brownian motion, driving system to-
wards equilibrium, and the particle convective motion
due to shear. The structural changes are accompanied
by changes of the suspension transport properties [1, 6].
In particular, for low densities viscosity often decreases
with increasing shear rate [7-12]; this phenomenon is
known as shear thinning and stems from changes of the
two-particle distributions induced by the shear flow. At
higher particle volume fractions the opposite relation has
been observed, i.e., the increase of viscosity with increas-
ing shear [13, 14, 12]. This phenomenon, known as shear
thickening, has been attributed to the formation of large
particle aggregates. Particle mobility and diffusion [15-
17] are also influenced by the shear flow. In particular,
the Einstein relation between effective self-diffusion and
self-mobility coefficients does not hold for a nonzero shear
rate [18]. A full theoretical understanding of the above-
mentioned phenomena is still lacking.

Recently, Blawzdziewicz and Szamel [11-20] proposed
a method to evaluate the structure factor and the viscos-
ity of a sheared semidilute hard-sphere suspension with
no hydrodynamic interactions, in a range of small and
moderate shear rates. In this paper we outline how
to modify their procedure to calculate the steady-state
shear-rate-dependent self-mobility for the same suspen-
sion model. A detailed presentation of our results will be
given elsewhere [21, 22]. Self-diffusion process can also
be treated by a similar method.

II. SYSTEM AND EQUATIONS

The suspension consists of mechanically identical col-
loidal particles of radius a, interacting via the hard-
sphere potential, with no hydrodynamic interactions.
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Some of the particles are tagged; their density n, is uni-
form and much smaller than the uniform density of un-
tagged particles n. A uniform external force ﬁext is ap-
plied to tagged particles.

Let 71 and 72 denote the position of the tagged and
an untagged particle, respectively; ¥ = 77 — 75 is their
relative position. The suspension is semidilute, i.e., the
volume fraction of untagged particles ¢ = 3ma’n is suf-
ficiently low for neglecting three-particle contributions
to the two-particle density: na(71,72,t) = nsn g2(7,t),
where g is the low density two-particle distribution, in-
dependent of n.

The suspension undergoes a steady shear flow

17(7—") = 70yéa:a (1)

with a constant shear rate 9. Suspended particles per-
form Brownian motion. The system is described by the
two-particle stationary Smoluchowski equation for two-
particle distribution g»(7) [1, 6]

V- 72(M =0, r>2a (2)
with a boundary condition on g2(7) at contact
7 ja(F) =0 ®3)
r=2a

and the two-particle current density js (7) taken as

F2(F) = (—2DoV + poFoxs + Yoyéz) g2(7) - (4)

In addition, g2(#) — 1 for r — co. The diffusion constant
Dy is related to the mobility of an isolated particle uq
through the Einstein relation Do = kT uo.

The external force Fey; generates j,, the tagged parti-
cle flux relative to the shear flow, in general not parallel
to ﬁext:

- > —
js =ng K Fext- (5)
Equatlon (5) defines the generalized self—moblhty tensor

lb According to the low density assumption, lt is a linear
function of ¢,
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TZ: Ko (? +2¢ ﬁ) ’ (6)

R nd R
where J is the unit tensor and M is the two-particle
contribution to self-mobility. Our goal is to determine
>
the dependence of M on the shear rate 9. In general,

ﬁ would also depend on the external force; however, in
Sec. IV we take ﬁext sufficiently small to allow for the
linearization of the boundary problem (2)-(4). Within
this approximation ﬁ is independent of Fext.

For hard spheres with no hydrodynamic interactions
fs is determined by g, as follows:

_}", = Ngpo (4a2nk3T/ d?Q 7 g2(2a7) + ﬁext) , )
S2

with # = 7/r. The dynamics of the system is character-
ized by the following dimensionless parameters (Péclet
numbers):

_ a =

= mFexta (8)
2
a
Y= ﬁ%' (9)

F and ~v are equal to the ratio of the correspond-
ing characteristic time scales. Namely, v = 7,/7s and
Fi=rn/7i, i==z,y,2, where 7, = a®/2Dy, 7, = 1/70,
and 75 = a/poF?,, are the time scales describing Brown-
ian motion, shear flow, and force drift, respectively. We
assume that F* <« 1 and we linearize the problem in F.
To evaluate self-mobility for small and moderate v we
use the series expansion in 'yl/ 2; our numerical results
are accurate for v < 5.

It is convenient to introduce dimensionless space co-
ordinates R = /2a and to use the corresponding di-
mensionless two-particle distribution G (R) = g2(7) and
dimensionless fluxes L(ﬁ1) = ﬁfs(ﬁ) and J;(R) =

ﬁ;‘z(’f"). To calculate the self-mobility tensor ﬂ from
Egs. (5) and (7) it is sufficient to evaluate G2 at con-
tact, i.e., on the unit sphere only. A method to evaluate
G2(R), the solution to the boundary problem (2)—(4) at
the unit sphere R= ﬁ, is developed in Secs. ITI-V.

III. INDUCED SOURCE METHOD

The idea is to construct the solution Gz(R) to the
boundary problem (2)—(4) (rewritten in dimensionless
variables) as a linear combination of fundamental solu-

tions Tagg(}_i) to Eq. (2). Tup¢ correspond to the mul-
tipole sources (—1)*+A+¢ 25 57553‘225-563(1-2‘), with o,
non-negative integers and { = 0,1 only (for { > 1, Toge
are linearly dependent on T, with p = 0,1 [22]). The
coefficients are determined by the boundary condition
(3).

Similarly as in [11, 19], the fundamental solutions Tog¢
can be evaluated [22] from the relation

i [0 (8 (- &)
" <_5‘%)CP(E’T)’ (10)

where P [23] is the solution to the time-dependent Smolu-
chowski equation with y~1§3(R) as the initial condition
(T = ty0/2 is rescaled time),

1/2

23 Y
P(R,T)=
(1 + %)1/2 (27T)3/2

2

X~—F1—7'Y)
X exp . ( 272
27 1+ %5

+ (Y—Fy§)2+ (Z—Fzg)z] } (11)

We express the solution to the boundary problem (2)—(4)
as a linear combination of fundamental solutions

Gz(ﬁ) = Z Z Caﬁ(Tag((ﬁ) + 1. (12)

a,3=0(=0,1

Inserting (12) into the boundary condition (3) we get

Z Z Caﬂ(Jaﬁc(R) = —R . (ﬁ + 2’)’Yéz)

?

«,B=0(=0,1 R=1
(13)
with J(R) defined as
L. 10 = R .
JR)=R-|—5-—5+F+27éY |T(R) . (14)
28R R—1

IV. LINEARIZATION IN F

For small dimensionless external force F* < 1, the
boundary problem (13) and (14) can be linearized in F.
Each quantity Q [Q stands for G3(R), T(R), J(R),C,...]
is approximated by a linear function of ﬁ,

Q=Q +QW.F. (15)

Equations (5)—(7) and (15) determine M (), the two-
particle contribution to the self-mobility tensor, as a
functional of GV (R):

M= / PQRGM(R). (16)
47 S2

( M does not depend on G(® due to symmetry.)

To find G()(R) we are going to solve linearized Eqgs.
(13) and (14) for C), i = 0,1. To this goal we apply the
idea from [19]; namely, we expand each quantity Q(i)(R)
(Q stands for T or J) into Cartesian harmonics Ygpc(R)
[24], with a,b = 0,1,2,... and ¢ = 0,1 (these harmonics
form a complete set of functions on S2):
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Q(l) (R) = Z Q(i)achabc(ﬁ)a (17)
a,b=0
N —R a+b+c e ab o° 1
Yae(B) = — =10 (18)

[2(a+b+c)—1]'8X2dYbdZ° R’

Each of the equations following from the linearization
of the boundary problem (13) and (14), and therefore
all the quantities Q) (ﬁ), are either symmetric or an-
tisymmetric under the transformations Z — —Z and
(X,Y) = (—X,-Y). In particular, it follows from sym-
metry in Z that there is no summation over c in Eq. (17):
¢ =0or 1 for Q) symmetric or antisymmetric with re-
spect to Z — —Z. In addition, Q92 = 0 for a + b even
or odd, depending on symmetry of Q) with respect to
(X,Y) = (—X,-Y).

After linearization the boundary condition (13) and
(14) takes the form of an infinite set of algebraic equa-
tions for the coefficients C(®) and C(1):

oo

Z CS)ﬂ)OJS)ﬁ)(()lbO = —2’760.161717 (19)
o,3=0

oo oo

Y Capedupe’™ == D7 CLpodige™ — R, (20)
a,3=0 a,B=0

where Rabc = (6,11550560, 6005516(;0, 6a06b06c1)- Because
of symmetry ¢ = 1 for the Z component of Eq. (20) and
¢ = 0 for the other components.

V. EXPANSION IN ~'/2

The self-mobility dependence on the shear rate vy needs
careful analysis since the perturbation in +, applied to
the stationary Smoluchowski equation, is singular and
T® are not analytical in . Equations (10) and (11)
determine the scaling T¥) ~ 4*/2 B()[y1/2 R, suggesting
that T® could be expanded in v1/2. Indeed, it has been
proved in [19, 22] that T are analytic in /2.

To expand in v'/2 those Cartesian-harmonic projec-
tions of é(l)(f{), which are the components of ﬁ [see
Eq. (22)], we make the following steps. First, starting
from integral (10), we construct an algorithm to eval-
uate explicitly the expansion in y1/2 of the Cartesian-
harmonic projections of T(®) and T(). Then, the expan-

(i)abe

sion of J 5. follows immediately. Next, to calculate the

expansion coefficients of C'Sgc,
Cc(;ﬂ)( = ZC%((V)’YV/Z’ (21)
v=0

we expand in /2 Egs. (19) and (20). To begin, we
solve Eq. (19) in the increasing order of u. For each u,
it turns out that only a finite number of the coefficients

ngc(u) is nonzero; all nonvanishing coeflicients are ex-
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pressed as linear combinations of CS,’,),, (v) with v < w,
determined in the previous orders. We substitute the
evaluated C(©) into Eq. (20) and analogously solve the
hierarchy for C_"(l)(u). For details see [19, 20, 22]. The
expansion of the coefficients C' and of the fundamental
solutions 7 in v'/2 is finally inserted into Eq. (12) to get
the Cartesian-harmonic projections of the two-particle

distribution at the contact é(l)(R) as a power series in
7?2 [22).

VI. SHEAR-RATE EXPANSION
OF SELF-MOBILITY

The expansion in y1/2 of M (v) immediately follows
from Eq. (16) and the expansion in y1/2 of G (R), pro-
jected onto the corresponding Cartesian harmonics [22]

. G&1)1oo G,1(11)100 0
M(y) = GS)OIO G§1)010 0 ) (22)
) 0 0 G£1)001

The leading behavior of M (v) is

-1 —&~ 0
M (y) = | 22 137 0 o(3* 23
M(’Y)_ 157 - + (’Y ) ( )
0 0 -1

In Ref. [18] the same leading behavior has been ob-
tained by linear response method. Szamel et al. evalu-
ated the coefficients of the linear v correction analytically
for hard spheres, in agreement with our present results,
and numerically for particles interacting via the screened
Coulomb potential (in this case the coeflicients depend
on the potential hardness). [However, there is a sign er-
ror in the normalization of the results given in Ref. [18]:
the numerical results presented in Fig. 1 of [18] and the

analytical results for hard spheres correspond to “ yimsd
> > >
and D /|D®)| rather than # /u(® and D /D©

The expansion of M in /2 up to the 47th order has
been evaluated numerically [22]. The series converges for
small v, but it is divergent for v1/2 above about 0.8. To
evaluate the self-mobility tensor for higher v we have cal-
culated a sequence of diagonal [IN/N| Padé approximants
with IV < 23. The estimated accuracy of the results is
within 1% for « up to 5 and within 0.1% for v < 2.

The dependence of ]\7 on v is presented in Fig. 1. Note
that the approximation (23) is valid for v < 0.01, a range
hardly visible on the scale of the picture. Even for rel-
atively small v a significant number of terms in the ex-
pansion has to be included.

It is interesting to analyze M., as a function of yv. M,
is positive for large -, as one could expect from a simple
analysis of a diffusionless suspension [22]. However, M,
changes sign at v = 0.4 and becomes negative for smaller
values of . This means that movement in the x direc-
tion driven by the y component of the external force has
opposite orientation for small and large ~.
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FIG. 1. Dependence of the self-mobility on the shear rate.

(a) Diagonal and (b) off-diagonal components of ]\? (7), the
two-particle contribution to the self-mobility tensor, are plot-
ted as functions of «y. The curves are labeled with the corre-
sponding component indices. Both M and v are dimension-
less.

VII. CONCLUDING REMARKS

We have determined the shear-rate dependence of the

self-mobility tensor 72 for a semidilute hard-sphere sus-
pension with no hydrodynamic interactions. For shear
rates v # 0 the self-mobility tensor is nondiagonal and
nonsymmetric.

As a result of the singular character of the perturbing
convective term in the two-particle Smoluchowski equa-
tion the self-mobility tensor is not analytic in . How-
ever, the expansion in powers of 4/2 can be performed.
The algorithm to determine the expansion coefficients
has been constructed and used to determine numerically

>

(by means of Padé approximants) the dependence of 1
on < in a range of v < 5.

Similar techniques can also be applied to analyze the
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self-diffusion process. In this case one has to solve the
Smoluchowski equation with no external force, but with
the nonuniform density of untagged particles n,. In the
special case when n, does not change along the flow di-
rection, the long-time long-wavelength limit can be per-
formed in the standard way. Resulting formal expressions
for the self-diffusion matrix coefficients D,; with b # =
(& is the flow direction), in terms of the solution to the
two-particle Smoluchowski equation, have been derived
in Ref. [18]. These expressions can be explicitly evalu-
ated using the y1/2 expansion technique described in the
present paper.

We note, however, that, in general (that is, when n,
does change along the flow direction), the analysis of
Ref. [18] is incorrect. In this case, even in the long-
wavelength limit, the density n, changes, due to convec-
tion, on the time scale 7, = 4 1. which for finite values
of the shear Péclet number v [Eq. (9)] is comparable to
the Boltzmann time scale 7,. The long-time analysis can-
not be performed without taking this phenomenon into
account. This was not noticed in [18] and the obtained
results for D, are incorrect if & = z. The long-time
long-wavelength self-diffusion process for a colloidal sus-
pension under shear is more complex and requires further
analysis.

As the last remark we note that the shear-rate-
dependent steady-state nonequilibrium structure and the
transport properties have been studied not only for col-
loidal suspensions but also for simple fluids. For example,
simple fluids under stationary shear has been recently
investigated [25-29]. A review of some earlier results is
given in [30].

For simple fluids, most of the work has been done the-
oretically and by means of computer simulations. Exper-
imentally it is very difficult to achieve shear rates corre-
sponding to intermediate or large Péclet number. This
is due to the fact that the Péclet number appropriate for
molecular systems is calculated using a molecular time
scale in place of the Brownian time scale. Therefore, for
a given shear rate, the Péclet number of a molecular fluid
is much smaller than for a colloidal suspension. For sim-
ple fluids it is easier to make experimental observations in
steady states generated by large temperature gradients.
In particular, for such systems a nonlinear distortion of
the structure factor from its equilibrium form has been
measured in Rayleigh scattering experiments [31].

We have mentioned here molecular systems since there
are important analogies between the behavior of colloidal
suspensions and simple fluids undergoing strong shearing
motion. In particular, the breakdown of the Einstein re-
lation between self-diffusion and self-mobility tensors has
been demonstrated for both systems (in [18] for colloids
and in [27] for simple fluids).
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